
MATH 245 S18, Exam 3 Solutions

1. Carefully define the following terms: ∩, ∪, (absolute) complement, Cartesian product.

Given sets S, T , S ∩ T = {x : x ∈ S ∧ x ∈ T}. Given sets S, T , S ∪ T = {x : x ∈ S ∨ x ∈ T}. Given sets
S,U with S ⊆ U , we define the absolute complement of S as U \ S. Given sets S, T , we define the Cartesian
product of S, T as {(x, y) : x ∈ S, y ∈ T}.

2. Carefully define the following terms: relation, symmetric (relation), antisymmetric (relation), trichotomous
(relation).

Given sets S, T , a relation from S to T is a subset of S×T . A relation R on S is symmetric if for all x, y ∈ S,
xRy → yRx. A relation R on S is antisymmetric if for all x, y ∈ S, (xRy ∧ yRx)→ x = y. A relation R on
S is trichotomous if for all x, y ∈ S, x = y ∨ xRy ∨ yRx.

3. Let S = {a, b}. Give a two-element subset of 2S×S . Be careful with notation.

Note that S × S = {(a, a), (a, b), (b, a), (b, b)}. Elements of 2S×S are subsets of S × S. We seek a set, which
contains two elements. Each of those elements must be a subset of S × S, namely a set of ordered pairs.
Many solutions are possible, such as {{(a, a)}, {(b, b)}} or {∅, S × S} or {{(a, a), (a, b)}, {(a, a), (b, a)}}.

4. Let S be a set. Prove that S ∪ ∅ = S.
This must be proved in two parts. First we prove ⊆: Let x ∈ S ∪ ∅. Then x ∈ S ∨ x ∈ ∅. We have two cases:
x ∈ S or x ∈ ∅. The second case can’t happen, so x ∈ S. This proves S ∪ ∅ ⊆ S. Next, we prove ⊇. Let
x ∈ S. By addition, x ∈ S ∨ x ∈ ∅. Hence x ∈ S ∪ ∅. This proves S ∪ ∅ ⊇ S.

5. Give a partition of Z with three parts.

Many solutions are possible; all of them consist of a set of three parts such as {P0, P1, P2}. One solu-
tion is P0 = {0}, P1 = N, P2 = {x ∈ Z : x < 0}. Another solution is to apply the Division Algorithm
with 3. Pi will be the set of integers with remainder i (which must be 0, 1, or 2). Another solution is
P0 = {0}, P1 = {1}, P2 = Z \ {0, 1}.

For problems 6 and 7, take ground set S = {−1, 0, 1} with relation R = {(a, b) : a ≤ b2}.

6. With R,S as above, prove or disprove that R is reflexive.

The statement is true. Because −1 ≤ (−1)2, (−1,−1) ∈ R. Because 0 ≤ 02, (0, 0) ∈ R. Because 1 ≤ 12,
(1, 1) ∈ R. These three together imply that R is reflexive.

7. With R,S as above, prove or disprove that R is transitive.

The statement is false. We need a specific counterexample. There is only one (it can be found by drawing
the relation’s digraph). Because 1 ≤ (−1)2, (1,−1) ∈ R. Because −1 ≤ 02, (−1, 0) ∈ R. However, (1, 0) /∈ R,
because 1 6≤ 02. Hence R is not transitive.

8. Prove or disprove: For all sets R,S, we have R \ S = R∆S.

The statement is false. We need a specific counterexample. Many are possible. A simple one is R = {1, 3}, S =
{2, 3}. We have R \ S = {1}, while R∆S = (R \ S) ∪ (S \R) = {1, 2}.

9. Prove or disprove: For all sets R,S, T satisfying R ⊆ S, S ⊆ T , and T ⊆ R, we must have R = S.

The statement is true. To prove R = S, we need to prove R ⊆ S (one of our hypotheses already), and S ⊆ R.
Let x ∈ S. Since S ⊆ T , x ∈ T . Since T ⊆ R, x ∈ R. Hence S ⊆ R.

10. Prove or disprove: |N| = |N0 × N0|.
The statement is true.
PROOF 1: As in Thm 9.17 and Exercise 9.24, for any n ∈ N we can uniquely write n = 2a(2b + 1), and pair
n↔ (a, b).
PROOF 2: We write all the ordered pairs in N0 × N0 in the first quadrant at their locations, and take a
zig-zag path starting at the origin and passing through all the pairs. We pair the nth position along the path
with the ordered pair at that position.
PROOF 3: We pair N with a subset of N0×N0, for example via n↔ (n, 0). This proves that |N| ≤ |N0×N0|.
We next pair N0 × N0 with a subset of N, for example via (a, b) ↔ 2a3b. This proves that |N| ≥ |N0 × N0|.
Lastly, we apply the Cantor-Schröder-Bernstein Theorem.


