MATH 245 S18, Exam 3 Solutions

1. Carefully define the following terms: \cap, \cup, (absolute) complement, Cartesian product.

Given sets $S, T, S \cap T=\{x: x \in S \wedge x \in T\}$. Given sets $S, T, S \cup T=\{x: x \in S \vee x \in T\}$. Given sets S, U with $S \subseteq U$, we define the absolute complement of S as $U \backslash S$. Given sets S, T, we define the Cartesian product of S, T as $\{(x, y): x \in S, y \in T\}$.
2. Carefully define the following terms: relation, symmetric (relation), antisymmetric (relation), trichotomous (relation).
Given sets S, T, a relation from S to T is a subset of $S \times T$. A relation R on S is symmetric if for all $x, y \in S$, $x R y \rightarrow y R x$. A relation R on S is antisymmetric if for all $x, y \in S,(x R y \wedge y R x) \rightarrow x=y$. A relation R on S is trichotomous if for all $x, y \in S, x=y \vee x R y \vee y R x$.
3. Let $S=\{a, b\}$. Give a two-element subset of $2^{S \times S}$. Be careful with notation.

Note that $S \times S=\{(a, a),(a, b),(b, a),(b, b)\}$. Elements of $2^{S \times S}$ are subsets of $S \times S$. We seek a set, which contains two elements. Each of those elements must be a subset of $S \times S$, namely a set of ordered pairs. Many solutions are possible, such as $\{\{(a, a)\},\{(b, b)\}\}$ or $\{\emptyset, S \times S\}$ or $\{\{(a, a),(a, b)\},\{(a, a),(b, a)\}\}$.
4. Let S be a set. Prove that $S \cup \emptyset=S$.

This must be proved in two parts. First we prove \subseteq : Let $x \in S \cup \emptyset$. Then $x \in S \vee x \in \emptyset$. We have two cases: $x \in S$ or $x \in \emptyset$. The second case can't happen, so $x \in S$. This proves $S \cup \emptyset \subseteq S$. Next, we prove \supseteq. Let $x \in S$. By addition, $x \in S \vee x \in \emptyset$. Hence $x \in S \cup \emptyset$. This proves $S \cup \emptyset \supseteq S$.
5. Give a partition of \mathbb{Z} with three parts.

Many solutions are possible; all of them consist of a set of three parts such as $\left\{P_{0}, P_{1}, P_{2}\right\}$. One solution is $P_{0}=\{0\}, P_{1}=\mathbb{N}, P_{2}=\{x \in \mathbb{Z}: x<0\}$. Another solution is to apply the Division Algorithm with 3. P_{i} will be the set of integers with remainder i (which must be 0,1 , or 2). Another solution is $P_{0}=\{0\}, P_{1}=\{1\}, P_{2}=\mathbb{Z} \backslash\{0,1\}$.
For problems 6 and 7 , take ground set $S=\{-1,0,1\}$ with relation $R=\left\{(a, b): a \leq b^{2}\right\}$.
6. With R, S as above, prove or disprove that R is reflexive.

The statement is true. Because $-1 \leq(-1)^{2},(-1,-1) \in R$. Because $0 \leq 0^{2},(0,0) \in R$. Because $1 \leq 1^{2}$, $(1,1) \in R$. These three together imply that R is reflexive.
7. With R, S as above, prove or disprove that R is transitive.

The statement is false. We need a specific counterexample. There is only one (it can be found by drawing the relation's digraph). Because $1 \leq(-1)^{2},(1,-1) \in R$. Because $-1 \leq 0^{2},(-1,0) \in R$. However, $(1,0) \notin R$, because $1 \not \leq 0^{2}$. Hence R is not transitive.
8. Prove or disprove: For all sets R, S, we have $R \backslash S=R \Delta S$.

The statement is false. We need a specific counterexample. Many are possible. A simple one is $R=\{1,3\}, S=$ $\{2,3\}$. We have $R \backslash S=\{1\}$, while $R \Delta S=(R \backslash S) \cup(S \backslash R)=\{1,2\}$.
9. Prove or disprove: For all sets R, S, T satisfying $R \subseteq S, S \subseteq T$, and $T \subseteq R$, we must have $R=S$.

The statement is true. To prove $R=S$, we need to prove $R \subseteq S$ (one of our hypotheses already), and $S \subseteq R$. Let $x \in S$. Since $S \subseteq T, x \in T$. Since $T \subseteq R, x \in R$. Hence $S \subseteq R$.
10. Prove or disprove: $|\mathbb{N}|=\left|\mathbb{N}_{0} \times \mathbb{N}_{0}\right|$.

The statement is true.
PROOF 1: As in Thm 9.17 and Exercise 9.24, for any $n \in \mathbb{N}$ we can uniquely write $n=2^{a}(2 b+1)$, and pair $n \leftrightarrow(a, b)$.
PROOF 2: We write all the ordered pairs in $\mathbb{N}_{0} \times \mathbb{N}_{0}$ in the first quadrant at their locations, and take a zig-zag path starting at the origin and passing through all the pairs. We pair the $n^{\text {th }}$ position along the path with the ordered pair at that position.
PROOF 3: We pair \mathbb{N} with a subset of $\mathbb{N}_{0} \times \mathbb{N}_{0}$, for example via $n \leftrightarrow(n, 0)$. This proves that $|\mathbb{N}| \leq\left|\mathbb{N}_{0} \times \mathbb{N}_{0}\right|$. We next pair $\mathbb{N}_{0} \times \mathbb{N}_{0}$ with a subset of \mathbb{N}, for example via $(a, b) \leftrightarrow 2^{a} 3^{b}$. This proves that $|\mathbb{N}| \geq\left|\mathbb{N}_{0} \times \mathbb{N}_{0}\right|$. Lastly, we apply the Cantor-Schröder-Bernstein Theorem.

