MATH 245 S18, Exam 3 Solutions

- 1. Carefully define the following terms: \cap , \cup , (absolute) complement, Cartesian product. Given sets $S, T, S \cap T = \{x : x \in S \land x \in T\}$. Given sets $S, T, S \cup T = \{x : x \in S \lor x \in T\}$. Given sets S, U with $S \subseteq U$, we define the absolute complement of S as $U \setminus S$. Given sets S, T, we define the Cartesian product of S, T as $\{(x, y) : x \in S, y \in T\}$.
- 2. Carefully define the following terms: relation, symmetric (relation), antisymmetric (relation), trichotomous (relation).

Given sets S, T, a relation from S to T is a subset of $S \times T$. A relation R on S is symmetric if for all $x, y \in S$, $xRy \to yRx$. A relation R on S is antisymmetric if for all $x, y \in S$, $(xRy \land yRx) \to x = y$. A relation R on S is trichotomous if for all $x, y \in S$, $x = y \lor xRy \lor yRx$.

3. Let $S = \{a, b\}$. Give a two-element subset of $2^{S \times S}$. Be careful with notation.

Note that $S \times S = \{(a, a), (a, b), (b, a), (b, b)\}$. Elements of $2^{S \times S}$ are subsets of $S \times S$. We seek a set, which contains two elements. Each of those elements must be a subset of $S \times S$, namely a set of ordered pairs. Many solutions are possible, such as $\{\{(a, a)\}, \{(b, b)\}\}$ or $\{\emptyset, S \times S\}$ or $\{\{(a, a), (a, b)\}, \{(a, a), (b, a)\}\}$.

4. Let S be a set. Prove that $S \cup \emptyset = S$.

This must be proved in two parts. First we prove \subseteq : Let $x \in S \cup \emptyset$. Then $x \in S \lor x \in \emptyset$. We have two cases: $x \in S$ or $x \in \emptyset$. The second case can't happen, so $x \in S$. This proves $S \cup \emptyset \subseteq S$. Next, we prove \supseteq . Let $x \in S$. By addition, $x \in S \lor x \in \emptyset$. Hence $x \in S \cup \emptyset$. This proves $S \cup \emptyset \supseteq S$.

5. Give a partition of \mathbb{Z} with three parts.

Many solutions are possible; all of them consist of a set of three parts such as $\{P_0, P_1, P_2\}$. One solution is $P_0 = \{0\}, P_1 = \mathbb{N}, P_2 = \{x \in \mathbb{Z} : x < 0\}$. Another solution is to apply the Division Algorithm with 3. P_i will be the set of integers with remainder *i* (which must be 0, 1, or 2). Another solution is $P_0 = \{0\}, P_1 = \{1\}, P_2 = \mathbb{Z} \setminus \{0, 1\}$.

For problems 6 and 7, take ground set $S = \{-1, 0, 1\}$ with relation $R = \{(a, b) : a \leq b^2\}$.

- 6. With R, S as above, prove or disprove that R is reflexive. The statement is true. Because $-1 \leq (-1)^2$, $(-1, -1) \in R$. Because $0 \leq 0^2$, $(0, 0) \in R$. Because $1 \leq 1^2$, $(1, 1) \in R$. These three together imply that R is reflexive.
- 7. With R, S as above, prove or disprove that R is transitive. The statement is false. We need a specific counterexample. There is only one (it can be found by drawing the relation's digraph). Because $1 \le (-1)^2$, $(1, -1) \in R$. Because $-1 \le 0^2$, $(-1, 0) \in R$. However, $(1, 0) \notin R$, because $1 \le 0^2$. Hence R is not transitive.
- 8. Prove or disprove: For all sets R, S, we have $R \setminus S = R\Delta S$. The statement is false. We need a specific counterexample. Many are possible. A simple one is $R = \{1, 3\}, S = \{2, 3\}$. We have $R \setminus S = \{1\}$, while $R\Delta S = (R \setminus S) \cup (S \setminus R) = \{1, 2\}$.
- 9. Prove or disprove: For all sets R, S, T satisfying $R \subseteq S, S \subseteq T$, and $T \subseteq R$, we must have R = S. The statement is true. To prove R = S, we need to prove $R \subseteq S$ (one of our hypotheses already), and $S \subseteq R$. Let $x \in S$. Since $S \subseteq T, x \in T$. Since $T \subseteq R, x \in R$. Hence $S \subseteq R$.
- 10. Prove or disprove: $|\mathbb{N}| = |\mathbb{N}_0 \times \mathbb{N}_0|$.

The statement is true.

PROOF 1: As in Thm 9.17 and Exercise 9.24, for any $n \in \mathbb{N}$ we can uniquely write $n = 2^a(2b+1)$, and pair $n \leftrightarrow (a, b)$.

PROOF 2: We write all the ordered pairs in $\mathbb{N}_0 \times \mathbb{N}_0$ in the first quadrant at their locations, and take a zig-zag path starting at the origin and passing through all the pairs. We pair the n^{th} position along the path with the ordered pair at that position.

PROOF 3: We pair \mathbb{N} with a subset of $\mathbb{N}_0 \times \mathbb{N}_0$, for example via $n \leftrightarrow (n, 0)$. This proves that $|\mathbb{N}| \leq |\mathbb{N}_0 \times \mathbb{N}_0|$. We next pair $\mathbb{N}_0 \times \mathbb{N}_0$ with a subset of \mathbb{N} , for example via $(a, b) \leftrightarrow 2^a 3^b$. This proves that $|\mathbb{N}| \geq |\mathbb{N}_0 \times \mathbb{N}_0|$. Lastly, we apply the Cantor-Schröder-Bernstein Theorem.